

Risk-Aware Bid Optimization for Online Display Advertisement

Rui Fan Department of Decision Sciences **HEC MONTREAL**

(joint work with Erick Delage)

CIKM '22

OUTLINE

I[NTRODUCTION](#page-2-0)

M[ETHODOLOGY](#page-6-0)

RISK NEUTRAL A[PPROACH](#page-12-0)

RISK AVERSE A[PPROACH](#page-14-0)

E[XPERIMENTS](#page-21-0)

C[ONCLUSION](#page-26-0)

CONTEXT

Figure: Ad exchange mechanism

PROBLEM DESCRIPTION

- ▶ An advertiser or agent (decision maker)
- ▶ Data: website users, ad slots format
- \blacktriangleright Find the optimal bidding policy given the predetermined budget for a certain period of time
- ▶ Map the bidding prices to each ad opportunity at once: Maximize the profit; Control the risk of violating the budget constraint.

RELATED WORK

- ▶ Linear related to Click-through rate (CTR) [\[11\]](#page-28-0) , or value of click [\[10,](#page-27-1) [2\]](#page-27-2) (truthful bidding)
- ▶ Non-linear with estimations of CTR, winning probabilities, etc. [\[16,](#page-28-1) [5,](#page-27-3) [12\]](#page-28-2)
- ▶ Multi-stage: RL-based models [\[8,](#page-27-4) [15,](#page-28-3) [17,](#page-28-4) [4\]](#page-27-5)

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)

RISK MANAGEMENT ON PROFIT (RMP) MODEL [\[7\]](#page-27-6)

- ▶ Static problem
- ▶ Risk of generated profit
- ▶ Risk from CTR estimation error (Bayesian logistic regression)
- ▶ Winning price is an independent variable

METHODOLOGY

- ▶ A stochastic model that mixes both empirical and parametric distributions
- \blacktriangleright Expected utility theory [\[1,](#page-27-7) [9\]](#page-27-8) with entropic risk measure [\[13\]](#page-28-5)
- ▶ Optimize a bid policy over a batch of *M* opportunities

ASSUMPTION

Assumption 1

The winning price W, realized click C and net value of the customer V are mutually independent given X.

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
00000 000000 000000 000000 000000 0

MODELING CONDITIONAL CTR

▶ We assume that the CTR depends on the opportunity's features X , and formally denote 1 :

 $\theta(X) := \mathbb{P}(C|X)$

¹DeepFM model [\[6\]](#page-27-9) is used to estimate $\theta(X)$

MODELING CONDITIONAL WINNING PRICE **DISTRIBUTION**

[Introduction](#page-2-0) **[Methodology](#page-6-0)** [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)

- ▶ The winning price *W* is conditional on observing *X*
- \blacktriangleright *W* follows the normal distribution *W* ∼ *N*($\hat{w}(X)$, $\sigma(X)$)
- ▶ Parametrized probability distribution function of the winning price *W* modeled as follows²:

$$
f_{W|X}(w)=\frac{1}{\sigma(X)\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{w-\hat{w}(X)}{\sigma(X)}\right)^2}.
$$

²DeepFM model [\[6\]](#page-27-9) is used to estimate $\hat{w}(X)$, $\sigma(X)$

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
00000 000000 000000 000000 000000 0

MODELING CONDITIONAL WINNING PROBABILITY

- \blacktriangleright Expense only happens when the advertiser wins the bids [\[10\]](#page-27-1)
- \blacktriangleright We model the probability of winning the bid depends on the bidding price *b* and the winning price *W*:

$$
s(b, W) := 1\{b \ge W\} = \begin{cases} 1 & b \ge W \\ 0 & \text{otherwise} \end{cases}
$$

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
00000 000000 000000 000000 000000 0

MODELING CONDITIONAL VALUE OF CUSTOMER

 \triangleright We model this variable conditional on the given opportunity *X* by ³ :

$$
\hat{V}(X) := \mathbb{E}[V|X]
$$

³ In our experiments, *V* will be considered independent of *X* and known for simplicity.

RISK NEUTRAL MODEL

- ▶ Considering a random batch of *M* i.i.d. opportunities denoted by $\{(X_i, W_i, C_i, V_i)\}_{i=1}^M$, with each V_i , C_i , and W_i mutually independent given *Xⁱ* (as per Assumption [1\)](#page-7-0)
- ▶ Maximizes the expected profit generated over the batch while satisfying the budget constraint:

$$
b^{rnp}(\cdot) := \underset{b:\mathcal{X}\to\mathbb{R}^+}{\text{argmax}} \qquad \mathbb{E}[\text{Batch profit}]
$$

s. t.
$$
\mathbb{E}[\text{Batch expense}] \le BM,
$$

MATHEMATICAL FORM

▶ Based on the linearity of expectation, batch expressions can be simplified to expected instantaneous value format:

$$
b^{\text{rnp}}(\cdot) = \underset{b:\mathcal{X}\to\mathbb{R}^+}{\text{argmax}} \qquad \mathbb{E}[VCs(b(X), W)] - \mathbb{E}[Ws(b(X), W)]
$$
\n
$$
\text{s.t.} \qquad \mathbb{E}[Ws(b(X), W)] \leq B. \tag{1}
$$

MODEL THE RISK

- \blacktriangleright Exponential utility function to model the risk aversion
- \triangleright We replace the expected expense constraint with:

 $\mathbb{E}[u_{\alpha}((1/M)\text{Batch expense})] \geq u_{\alpha}^{-1}(B),$

where $u_{\alpha}(y) := -\exp(\alpha y)$ is a concave utility function that allows the decision maker to control risk exposure using the parameter α .

MODEL THE RISK

▶ For a batch of *M* opportunities, the constraint takes the form:

$$
\mathbb{E}[u_{\alpha}(\frac{1}{M}\sum_{i=1}^{M}W_{i}s(b(X_{i}),W_{i}))]\geq u_{\alpha}(B).
$$
 (2)

MODEL THE RISK

Lemma 1 *Constraint* [\(2\)](#page-15-0)

$$
\mathbb{E}[u_{\alpha}(\frac{1}{M}\sum_{i=1}^{M}W_{i}s(b(X_{i}),W_{i}))]\geq u_{\alpha}(B)
$$

is equivalent to

 $\mathbb{E}[h(b(X), X)] \geq -1,$

where

$$
h(b, X) := -e^{\gamma_1(X)} \Phi\left(\frac{b - \hat{w}(X) - \alpha' \sigma(X)^2}{\sigma(X)}\right) - e^{\gamma_2} + e^{\gamma_2} \Phi\left(\frac{b - \hat{w}(X)}{\sigma(X)}\right)
$$
\n(3)

with
$$
\alpha' := \alpha/M
$$
, $\gamma_1(X) := (1/2)(\alpha')^2 \sigma(X)^2 + \alpha' \hat{w}(X) - \alpha' B$ and
\n $\gamma_2 := -\alpha' B$. 17/30

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
00000 00000 00000 00000 00000 00000 0

RISK AVERSE PROFIT MAXIMIZATION MODEL

▶ The risk-averse expected instantaneous profit maximization problem:

$$
b^{\text{rap}}(\cdot) := \underset{b: \mathcal{X} \to \mathbb{R}^+}{\operatorname{argmax}} \qquad \mathbb{E}[VCs(b(X), W)] - \mathbb{E}[Ws(b(X), W)]
$$
\n
$$
\text{s.t.} \qquad \mathbb{E}[h(b(X), X)] \ge -1. \tag{4}
$$

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)

00000 00000 00000 00000 00000 00000 0

LAGRANGIAN RELAXATION

$$
\tilde{b}_{\lambda}^{\text{rap}}(\cdot) := \underset{b:\mathcal{X}\to\mathbb{R}^+}{\text{argmax}} \quad \mathbb{E}[VCs(b(X), W)] - \mathbb{E}[Ws(b(X), W)]
$$
\n
$$
= \underset{b:\mathcal{X}\to\mathbb{R}^+}{\text{argmax}} \quad \mathbb{E}[\mathcal{G}_{\lambda}(b(X), X)],
$$

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
0000 00000 00000 00000 00000 00000 0

LAGRANGIAN MULTIPLIER

- \blacktriangleright Indicate the strength of the budget constraint
- \blacktriangleright The relationship between λ and expected revenue/expense is monotonous
- \blacktriangleright The optimal λ can be found by the bisection method using the Training set that depends on the empirical distribution of *X*

[Introduction](#page-2-0) [Methodology](#page-6-0) [Risk Neutral Approach](#page-12-0) [Risk Averse Approach](#page-14-0) [Experiments](#page-21-0) [Conclusion](#page-26-0) [References](#page-27-0)
00000 000000 000000 000000 000000 00000 0

CLOSED-FORM SOLUTION OF LAGRANGIAN RELAXATION

Lemma 2 *For any* $\lambda \geq 0$, a maximizer of the Lagrangian relaxation takes the *form:*

$$
\forall X \in \mathcal{X}, \ \tilde{b}_{\lambda}^{rap}(X) := \max_{\substack{b \in \{0, -\frac{\mathbf{W}(\lambda \alpha' e^{(\hat{V}(X)\theta(X) + \lambda e^{\hat{\gamma}_2} - B)\alpha')}}{\alpha'}}} \mathcal{G}_{\lambda}(b, X),
$$

where **W** *is the Lambert W-function [\[3\]](#page-27-10), i.e. the inverse of* $f(x) := xe^x.$

EVALUATION METRICS

- \blacktriangleright Sharpe ratio [\[14\]](#page-28-6)
- \blacktriangleright (Empirical) Early stop frequency
- \blacktriangleright Common KPIs: profit, expense, clicks, impression rate⁴

⁴The probability that advertiser successfully expose the ad to the customers, which is the realized winning rate

RISK CONTROL

▶ Control on expense

Figure: Empirical CDF of Batch expense under different risk level when $B=\bar{B}/2$

23 / 30

RISK CONTROL

 \blacktriangleright Early stop frequency

Figure: Empirical Early Stop Frequency under different risk level for the profit model with $B=\bar{B}/32$

COMPARISON

Table: Metrics Results Compared with RMP model when $B=\bar{B}/2$

COMPARISON

Table: Metrics Results Compared with RMP model when B= $\bar{B}/32$

CONCLUSION

- ▶ Effective risk control
- ▶ Competitive performance
- ▶ Interpretability & feasibility

BIBLIOGRAPHY I

- [1] Daniel Bernoulli. Exposition of a new theory on the measurement of risk. *Econometrica*, 22(1):23–36, 1954.
- [2] Ye Chen, Pavel Berkhin, Bo Anderson, and Nikhil R. Devanur. Real-time bidding algorithms for performance-based display ad allocation. In *Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '11, page 1307–1315, New York, NY, USA, 2011. Association for Computing Machinery.
- [3] Robert Corless, Gaston Gonnet, D. Hare, David Jeffrey, and D. Knuth. On the lambert w function. *Advances in Computational Mathematics*, 5:329–359, 01 1996.
- [4] Manxing Du, Redouane Sassioui, Georgios Varisteas, Radu State, Mats Brorsson, and Omar Cherkaoui. Improving real-time bidding using a constrained markov decision process, 10 2017.
- [5] Joaquin Fernandez-Tapia, Olivier Guéant, and Jean-Michel Lasry. Optimal real-time bidding strategies, 2016.
- [6] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-machine based neural network for ctr prediction, 2017.
- [7] Zhang Haifeng, Zhang Weinan, Rong Yifei, Ren Kan, Li Wenxin, and Wang Jun. Managing risk of bidding in display advertising. *Proceedings of the Tenth ACM International Conference on Web Search and Data Mining*, 02 2017.
- [8] Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. Real-time bidding with multi-agent reinforcement learning in display advertising. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*, CIKM '18, page 2193–2201, New York, NY, USA, 2018. Association for Computing Machinery.
- [9] Oskar Morgenstern John von Neumann. *Theory of Games and Economic Behavior*. Princeton University Press, 1944.
- [10] Michael Ostrovsky, Benjamin Edelman, and Michael Schwarz. Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. *American Economic Review*, 97:242–259, 2007.

BIBLIOGRAPHY II

- [11] Claudia Perlich, Brian Dalessandro, Rod Hook, Ori Stitelman, Troy Raeder, and Foster Provost. Bid optimizing and inventory scoring in targeted online advertising. In *Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '12, page 804–812, New York, NY, USA, 2012. Association for Computing Machinery.
- [12] Kan Ren, Weinan Zhang, Ke Chang, Yifei Rong, Yong Yu, and Jun Wang. Bidding machine: Learning to bid for directly optimizing profits in display advertising. *IEEE Transactions on Knowledge and Data Engineering*, 30(4):645–659, 2018.
- [13] Birgit Rudloff and Ralf Wunderlich. Entropic risk constraints for utility, 2008.
- [14] William F. Sharpe. The sharpe ratio. *The Journal of Portfolio Management*, 21(1):49–58, 1994.
- [15] Di Wu, Xiujun Chen, Xun Yang, Hao Wang, Qing Tan, Xiaoxun Zhang, Jian Xu, and Kun Gai. Budget constrained bidding by model-free reinforcement learning in display advertising. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*, CIKM '18, page 1443–1451, New York, NY, USA, 2018. Association for Computing Machinery.
- [16] Weinan Zhang, Shuai Yuan, and Jun Wang. Optimal real-time bidding for display advertising. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '14, page 1077–1086, New York, NY, USA, 2014. Association for Computing Machinery.
- [17] Jun Zhao, Guang Qiu, Ziyu Guan, Wei Zhao, and Xiaofei He. Deep reinforcement learning for sponsored search real-time bidding. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, KDD '18, page 1021–1030, New York, NY, USA, 2018. Association for Computing Machinery.

QUESTIONS & COMMENTS

\blacktriangleright Code:

[https://github.com/ReneeRuiFAN/risk-aware_bid_](https://github.com/ReneeRuiFAN/risk-aware_bid_optimization) [optimization](https://github.com/ReneeRuiFAN/risk-aware_bid_optimization)

▶ Contact: rui fan@hec.ca rui@rbcwmlab.com

Thank you!