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CONTEXT

Figure: Ad exchange mechanism
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PROBLEM DESCRIPTION

▶ An advertiser or agent (decision maker)
▶ Data: website users, ad slots format
▶ Find the optimal bidding policy given the predetermined

budget for a certain period of time
▶ Map the bidding prices to each ad opportunity at once:

Maximize the profit;
Control the risk of violating the budget constraint.
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RELATED WORK

▶ Linear related to Click-through rate (CTR) [11] , or value of
click [10, 2] (truthful bidding)

▶ Non-linear with estimations of CTR, winning probabilities,
etc. [16, 5, 12]

▶ Multi-stage: RL-based models [8, 15, 17, 4]
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RISK MANAGEMENT ON PROFIT (RMP) MODEL [7]

▶ Static problem
▶ Risk of generated profit
▶ Risk from CTR estimation error (Bayesian logistic

regression)
▶ Winning price is an independent variable
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METHODOLOGY

▶ A stochastic model that mixes both empirical and
parametric distributions

▶ Expected utility theory [1, 9] with entropic risk measure
[13]

▶ Optimize a bid policy over a batch of M opportunities
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ASSUMPTION

Assumption 1
The winning price W, realized click C and net value of the customer
V are mutually independent given X.
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MODELING CONDITIONAL CTR

▶ We assume that the CTR depends on the opportunity’s
features X, and formally denote 1:

θ(X) := P(C|X)

1DeepFM model [6] is used to estimate θ(X)
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MODELING CONDITIONAL WINNING PRICE

DISTRIBUTION

▶ The winning price W is conditional on observing X
▶ W follows the normal distribution W ∼ N(ŵ(X), σ(X))

▶ Parametrized probability distribution function of the
winning price W modeled as follows 2:

fW|X(w) =
1

σ(X)
√

2π
e−

1
2

(
w−ŵ(X)
σ(X)

)2

.

2DeepFM model [6] is used to estimate ŵ(X), σ(X)
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MODELING CONDITIONAL WINNING PROBABILITY

▶ Expense only happens when the advertiser wins the bids
[10]

▶ We model the probability of winning the bid depends on
the bidding price b and the winning price W:

s(b,W) := 1{b ≥ W} =

{
1 b ≥ W
0 otherwise
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MODELING CONDITIONAL VALUE OF CUSTOMER

▶ We model this variable conditional on the given
opportunity X by 3 :

V̂(X) := E[V|X]

3In our experiments, V will be considered independent of X and known
for simplicity.
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RISK NEUTRAL MODEL

▶ Considering a random batch of M i.i.d. opportunities
denoted by {(Xi,Wi,Ci,Vi)}M

i=1, with each Vi, Ci, and Wi
mutually independent given Xi (as per Assumption 1)

▶ Maximizes the expected profit generated over the batch
while satisfying the budget constraint:

brnp(·) := argmax
b:X→R+

E[Batch profit]

s. t. E[Batch expense] ≤ BM,
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MATHEMATICAL FORM

▶ Based on the linearity of expectation, batch expressions
can be simplified to expected instantaneous value format:

brnp(·) = argmax
b:X→R+

E[VCs(b(X),W)]− E[Ws(b(X),W)]

s. t. E[Ws(b(X),W)] ≤ B. (1)
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MODEL THE RISK

▶ Exponential utility function to model the risk aversion
▶ We replace the expected expense constraint with:

E[uα((1/M)Batch expense)] ≥ u−1
α (B),

where uα(y) := − exp(αy) is a concave utility function that
allows the decision maker to control risk exposure using the
parameter α.
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MODEL THE RISK

▶ For a batch of M opportunities, the constraint takes the
form:

E[uα(
1
M

M∑
i=1

Wis(b(Xi),Wi))] ≥ uα(B). (2)
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MODEL THE RISK

Lemma 1
Constraint (2)

E[uα(
1
M

M∑
i=1

Wis(b(Xi),Wi))] ≥ uα(B)

is equivalent to
E[h(b(X),X)] ≥ −1,

where

h(b,X) := −eγ1(X)Φ(
b − ŵ(X)− α′σ(X)2

σ(X)
)− eγ2 + eγ2Φ(

b − ŵ(X)

σ(X)
)

(3)

with α′ := α/M, γ1(X) := (1/2)(α′)2σ(X)2 + α′ŵ(X)− α′B and
γ2 := −α′B. 17 / 30
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RISK AVERSE PROFIT MAXIMIZATION MODEL

▶ The risk-averse expected instantaneous profit
maximization problem:

brap(·) := argmax
b:X→R+

E[VCs(b(X),W)]− E[Ws(b(X),W)]

s. t. E[h(b(X),X)] ≥ −1. (4)
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LAGRANGIAN RELAXATION

b̃
rap
λ (·) := argmax

b:X→R+

E[VCs(b(X),W)]− E[Ws(b(X),W)]

− λ(−1 − E[h(b(X),X)])

= argmax
b:X→R+

E[Gλ(b(X),X)],
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LAGRANGIAN MULTIPLIER

▶ Indicate the strength of the budget constraint
▶ The relationship between λ and expected

revenue/expense is monotonous
▶ The optimal λ can be found by the bisection method using

the Training set that depends on the empirical distribution
of X
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CLOSED-FORM SOLUTION OF LAGRANGIAN

RELAXATION

Lemma 2
For any λ ≥ 0, a maximizer of the Lagrangian relaxation takes the
form:

∀X ∈ X , b̃rap
λ (X) :=

arg max
b∈{0, −W(λα′e(V̂(X)θ(X)+λeγ2−B)α′

)

α′ +V̂(X)θ(X)+λeγ2 , ∞}

Gλ(b,X),

where W is the Lambert W-function [3], i.e. the inverse of
f (x) := xex.
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EVALUATION METRICS

▶ Sharpe ratio [14]
▶ (Empirical) Early stop frequency
▶ Common KPIs: profit, expense, clicks, impression rate4

4The probability that advertiser successfully expose the ad to the
customers, which is the realized winning rate
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RISK CONTROL

▶ Control on expense

Figure: Empirical CDF of Batch expense under different risk level
when B=B̄/2

23 / 30



Introduction Methodology Risk Neutral Approach Risk Averse Approach Experiments Conclusion References

RISK CONTROL
▶ Early stop frequency

Figure: Empirical Early Stop Frequency under different risk level for
the profit model with B=B̄/32
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COMPARISON

Table: Metrics Results Compared with RMP model when B=B̄/2

Metrics RAP RNP RMP-A RMP-N
Avg. batch clicks 5.600 6.367 3.867 3.700
Avg. batch profit 192574 169873 144471 142193

Avg. batch expense 292121 381178 190200 178052
Avg. impression rate 64.5% 69.6% 41.5% 38.8%
Sharpe ratio of profit 1.083 0.847 0.892 0.922
Early stop frequency 0 100% 0 0
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COMPARISON

Table: Metrics Results Compared with RMP model when B=B̄/32

Metrics RAP RNP RMP-A RMP-N
Avg. batch clicks 0.333 1.267 0.433 0.500
Avg. batch profit 20844 85811 30136 19454

Avg. batch expense 8006 23822 7370 23822
Avg. impression rate 7.7% 6.9% 5.0% 7.3%
Sharpe ratio of profit 0.450 0.802 0.487 0.363
Early stop frequency 0 100% 0 100%
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CONCLUSION

▶ Effective risk control
▶ Competitive performance
▶ Interpretability & feasibility
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QUESTIONS & COMMENTS

▶ Code:
https://github.com/ReneeRuiFAN/risk-aware_bid_

optimization

▶ Contact:
rui.fan@hec.ca
rui@rbcwmlab.com

Thank you!
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